
Edsger Dijkstra
Brian Randell

School of Computing Science, University of Newcastle upon Tyne, UK
Brian.Randell@newcastle.ac.uk

                                                

© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

1. Introduction
I was most honoured, but also somewhat confused,

by the invitation to give a banquet speech about the late
great Edsger Dijkstra at WORDS 2003. This is because the
term “banquet speech” is American, and translating it into
the English term “after-dinner speech” is rather misleading.
In Britain an “after-dinner speech” is meant to be, above
all, humorous, so as to be capable of entertaining, and
retaining at least the attention, if not the enthusiasm, of an
audience that have just eaten and drunk, to excess in all
probability.

But the privilege of talking to you about Edsger
Dijkstra is not an occasion for humour – or at least only
occasional humour, in the very personal portrait I’m going
to try and give you of one of computer science’s
intellectual giants, one I am honoured to have called a
friend.

I have another cause for misgivings. What I can say
about Dijkstra is bound to seem inadequate to any of you
who knew him – and will feel to me to be inadequate for
any who didn’t. But with these caveats, let me begin.

You have, I believe, all been given a copy of a leaflet
[Campbell-Kelly 2002] about Dijkstra – I hope you’ve had
a chance to read it. My aim is not to relate all the factual
statements it contains, which between them amply testify
to the extent and importance of his contributions to
computer science, but rather to augment these statements
with some mainly personal recollections – and also to
encourage all of you to explore for yourself some of his
work through his many writings.

I should explain the background to this leaflet. It was
produced for a British Computer Society meeting last year
honouring the memory of Edsger Dijkstra, a meeting at
which Tony Hoare and I were the main speakers. I used the
invitation to speak at the meeting as an opportunity to tell
Ria Dijkstra (Edsger’s widow) and a lot of people who
knew Dijkstra well, or at least knew lots about Dijkstra,
what a debt I owed to him. I will use here some of the
remarks I made on that occasion, but I will include rather
more information about Dijkstra’s work and its

significance than I did in my brief talk at the BCS
meeting.

2. Brighton 1960
For me, the story of Edsger Dijkstra begins in 1960,

when I heard him lecture on his Algol 60 Compiler at a
conference in Brighton.

I hope I don’t have to convince you of the importance
of the Algol 60 Report [Naur (ed.) 1960], both for the
Algol language, and as an example of how to define a
programming language, in particular its syntax. The
Report documented the work of a committee, but was itself
largely the work of Peter Naur. Dijkstra was at this time a
programmer at the Mathematical Centre, Amsterdam,
whose Director, Professor van Wijngaarden, was a member
of the Algol Committee.

Within seven months of the publication of the
Report, Dijkstra and a colleague, Jaap Zonneveld, had
completed a compiler for virtually all of Algol 60, despite
the fact that language had many highly novel features, and
great generality. (For example, it had recursive procedures,
hierarchical name scoping, multi-dimensional arrays whose
size could depend on input calculations, powerful parameter
passing mechanisms, etc. – facilities far exceeding in
generality and elegance those of the two main languages
that predated it, Fortran and Cobol.) Indeed, Dijkstra and
his colleague produced their compiler at a time when no-
one on the committee had yet figured out how to compile
the language whose facilities they had just approved.

At this time I was at the English Electric Company,
at Whetstone, a small place outside the city of Leicester (or
“Lie-cester” as I should pronounce it – since this is after all
an American-style banquet talk). I was managing a small
“Automatic Programming Section”, which had been
established after I and a colleague had – as a bootleg project
– produced a compiler for English Electric’s first computer,
the DEUCE. (The first DEUCE was produced in 1955, but
its design was very closely based on Alan Turing’s original
plans for the ACE computer at the UK’s National Physical
Laboratory [Turing 1945]. Hence its order code was
extremely cleverly designed, but usable well only by
extremely clever programmers, i.e. by the likes of Alan



Turing himself – hence the need for a compiler, for use by
ordinary mortals.)

Another colleague, Lawford Russell, and I were then
planning – for an as yet unspecified language – a compiler
aimed at easing the task of developing programs for
English Electric’s new computer, the KDF9 [Davis 1960].
After Dijkstra’s talk, someone suggested that Lawford and I
should target our work on Algol, and seek Dijkstra’s
assistance. This led – eventually, since it took quite a
while to get permission – to my first ever expenses-paid
foreign travel!

3. Visit to Mathematical Centre
Lawford and I spent a wonderful, but highly intensive

week in Amsterdam – learning about the Electrologica X8
compiler – and discussing plans for a compiler for KDF9,
a compiler that later became known as the Whetstone
Compiler. This was to be a compiler for use during
program development, there being plans elsewhere in
English Electric for an optimising compiler for the
machine. Hence we decided that we would produce a
compiler that would convert Algol into an intermediate
(Pcode-like) language. In effect we designed a computer
architecture that would be convenient to compile for and
that would be implemented by an interpreter.

Many details, small and large, of that wonderful week
are burned into my memory. For example, I recall that the
Mathematical Centre carefully booked us into the Hotel
Krasnapolsky – they knew from experience that it was
virtually impossible for a foreign visitor to Amsterdam to
mispronounce the name so badly as to confuse a taxi
driver.

We spent each morning and afternoon in intensive
discussions with Dijkstra, but he asked us to look after
ourselves at lunchtime, so that he could have a rest from
speaking English, though in fact his command of the
language was already impressive. Indeed, during a very
pleasant evening with Edsger and his wife Ria in their
apartment, I recall him seeking linguistic help only with
some of the more abstruse wording of a song by Tom
Lehrer.

4. Our Trip Report and Book
After returning from Amsterdam we produced a

detailed report documenting these discussions [Randell and
Russell 1962]. This was thus both a description of
Dijkstra’s original compiler, and an initial account of how
our planned compiler for the KDF9 might work. To our
pride (and now to my regret) Edsger used the availability of
our report both to fend off further would-be visitors, and as
an excuse to avoid producing his own detailed account of
his compiler.

I’ve been referring to him as Edsger, but in fact during
all this time, and in the correspondence that followed our

visit, we were still addressing each other formally. (This
was Europe, and the 1960’s!)

But then Lawford and I found a way of usefully
improving Dijkstra’s compiler, which he had designed
simply to report the first error it found in any Algol source
program and then stop. (This was in line with his attitudes
to programming and programmers, but not very
appropriate for the kind of industrial program development
environment that we had in mind.) He in fact had a horror
of producing a compiler that simply proceeded regardless
with the compilation after detecting a source program error,
and so – almost inevitably – got confused and ‘discovered’
all sorts of spurious errors. However, we came up with a
scheme that almost entirely avoided producing any
incorrect error reports while going on and looking for
further actual errors in the source program. We documented
this in a report, and sent it to Dijkstra. His reply, for the
first time ever, started ‘Dear Brian’ – I felt as if I’d just
been awarded a higher degree.

We continued to correspond with Dijkstra as we
designed our compiler. In retrospect, it is now clear that we
greatly benefitted from an annoying series of delays to the
completion of the first KDF9 computer – a period during
which we refined our design and other people started using
it to develop compilers for their own computers. Then
someone startled us with the suggestion that we write a
book describing our compiler. We of course asked Dijkstra
what he thought of this. He was very supportive, and gave
us some very valuable, albeit uncomfortable, advice. This
was that instead of just describing our compiler, we should
try to list all the alternatives we had considered for each
design choice and explain the basis on which we had
chosen amongst these alternatives. Moreover, he advised
that we should make a point of admitting it when our
choice had been arbitrary and/or had in retrospect proved to
be wrong. I have always been extremely grateful for this
advice – and have taken care to pass it on to all my
graduate students.

Edsger’s advice to me was of course in line with the
fact that he always himself set and followed very high
standards for clarity and presentation of writing and
lecturing. Although the lecturing style that he developed
had its critics (some of whom mistakenly interpreted his
reflective pauses as mere theatricality), my own regret is
that I cannot match either the clarity with which he
lectured, or the skill he demonstrated throughout his career
at inventing or choosing appropriate problems and
examples.

5. 1964 – IBM and Algol WG 2.1
By 1964, our Whetstone KDF9 compiler, and a

number of other versions of it, had been completed, and
our book had been published [Randell and Russell 1964].
To my surprise, I was invited to join the IBM Research
Center, in Yorktown Heights, New York. (I had not
thought of what we were doing as research – we produced



the compiler because it was needed.) With some
misgivings, which I’m sure Dijkstra shared, since to him
IBM was ‘The Great Satan’, such was his dislike of their
hardware and software, I joined IBM – and thus was able at
last to take up my invitation to membership of the IFIP
Working Group 2.1 on Algol. (I hadn’t been able to get
permission from English Electric to accept – one trip
abroad was enough in their view!). By this time Dijkstra
was also a member – and from then on, for many years at
the Algol committee and elsewhere, I had numerous
opportunities to meet him – and to have numerous
memories to draw on for this talk.

When I joined IBM I made it clear I had no intention
of writing another compiler. Instead I got involved in
compiler architecture and in particular in operating systems
– as had Dijkstra. Indeed before he got involved in
compilers, he had worked on communications facilities,
and (the entirely novel, and to his view of programming,
fearsome idea of) interrupt handling. This was for the
Electrologica X1 compiler, work for which he obtained a
PhD – work that provided a basis on which he laid many
of the foundations of the entire subject of concurrent
programming.

6. 1967 SOSP
Dijkstra’s seminal contributions in the area of

concurrent programming were on problems such as process
synchronisation, critical sections, and system deadlocks –
for example, his famous work on the “dining
philosophers” problem. He, and this work, starred at the
ACM’s first Symposium on Operating System Principles,
where he presented a paper on the THE Operating System -
see below. I also attended this conference, which was held
in Gatlinburg, Tennessee, at the time a so-called “dry”
town, in which the only alcohol that could be obtained was
very appropriately called “near beer” – whose alcohol
content was as low as its temperature, and as Dijkstra’s
spirits when he found that it was all that was available.

At the Symposium my recollection is that Edsger
used a very simple and elegant diagram (representing what
he termed “progress space”) showing the dangers of
deadlock between a pair of processes competing for
unsharable resources – the term he used at this time for
deadlock was “deadly embrace”, and his impact was such
that the symposium organisers made an impromptu award
to him, of two toy “Smoky Mountain Brown Bears”
locked in a deadly embrace. But he also had one other
major impact on at least some of the conference attendees –
and this was quite unintended.

There had been a move to set up a committee to define
an ideal list of operating system primitives. Edsger and I
had both refused invitations to join this committee, with
some alacrity. That evening he and I had dinner together,
during which we had great fun drawing up a spoof list of
desirable operating system facilities – a list that I know
Dijkstra carried around in his wallet for some years

afterwards. (The only item I can remember from the list is
“Execute Operator.”) Edsger was so pleased with our list
that he took it across to a group of conference attendees at
a table on the far side of the dining room, only to return
looking somewhat abashed – it turned out that this group
was the committee, having its first meeting!

After Gatlinburg, Edsger travelled back with me to
IBM Research, where I had arranged that he would give a
lecture in the large and impressive research auditorium.
After his talk I confessed to him that I had planned a
practical joke, but that at the last moment I had had cold
feet, and not gone through with it. This was to place
across the top of the lectern, invisible to the audience and
to Dijkstra until he came up to the lectern following my
introduction of him, a plastic strip I had taken from the
hotel room in Gatlinburg. The strip said “This has been
sanitized for your protection.” Such a warning would have
been very appropriate, given his attitude to IBM, but when
I afterwards confessed what I had been planning, he thanked
me for my restraint, saying that it would have taken him
the whole time allotted to his lecture to stop laughing.

7. The THE operating system
Dijkstra’s paper on the THE Operating System from

the Gatlinburg symposium was published in the CACM in
1968 [Dijkstra 1968b]. (THE stands for “Technische
Hogeschool (Technological University), Eindhoven”,
where he had taken up a professorship some years earlier.)
The THE system was a staggering achievement, because it
was so well designed and coded that there were virtually no
bugs in it. One of the keys was its structure as a set of
levels of abstraction, each of which hid some aspects of the
underlying hardware and introduced further convenient
facilities for use by user programs. But the choice and
ordering of these levels were not arbitrary – rather what
was critical was that at each successive level, the time
granularity became roughly an order of magnitude larger.
Thus one could to a great extent design these levels
independently of each other.

All this was totally revolutionary! For years it was
almost obligatory, in any new paper on operating system
design, to reference this paper – now I fear there are
generations who have never heard of it. If you are a
member of one of these generations let me urge you to go
find it in the CACM, and read it.

8. GoTo Considered Harmful
One of the earliest influential attempts at turning

programming into a respectable discipline, rather than a
mere craft, was the movement, led mainly by Dijkstra and
a few colleagues, promoting ‘structured programming’. At
the time some people equated structured programming
merely with mechanically avoiding the use of go t o
statements. Indeed Dijkstra’s 1968 letter to the editor of the
Communications of the ACM [Dijkstra 1968a] on this
topic caused a huge debate, though it gets forgotten that



the title ‘go to considered harmful’ was dreamt up by the
editor rather than by Edsger himself.

It is in fact illuminating to recall the elegant argument
that Edsger advanced against the use of go t o s. The
essence of this argument was that one could only interpret
the value of a program variable if one could identify the
present stage of progress through the computation. One
could make such identifications very easily when using
well-disciplined control structures such as if statements,
for statements and procedure calls. However, Dijkstra
pointed out that once go to statements were being used,
one had to use the values of variables to identify the stage
of progress, i.e. to understand the values of variables –
clearly a most undesirable state of affairs

9. The 1968 NATO S/W Engineering
Conferences

In October 1968 Edsger and I participated in the first
of the NATO Software Engineering conferences, held at
Garmisch-Partenkircken, in Germany [Naur and Randell
1969]. We have both since gone on record as to how the
discussions at this conference on the “software crisis”, and
on the potential for software-induced catastrophes, strongly
influenced our thinking and our subsequent research
activities. In Edsger’s case it led him into an immensely
fruitful long-term study of the problems of producing high
quality programs. In my own case, it led me to consider
the then very novel, and still somewhat controversial, idea
of design fault tolerance. Suffice it to say that our
respective choices of research problem suitably reflect our
respective skills at program design and verification.

10. Algol 68
1968 was also a critical year in the life of the IFIP

Algol Committee, which was striving to develop a
successor to Algol 60. By this time, Niklaus Wirth had
left the committee to pursue his own ideas on language
development, work which later resulted in the Pascal
language. Dahl and Nygaard had produced Simula, (an
extension of Algol 60 aimed at simulation) and then
Simula 67, their ‘Common Base Language’ [Dahl and
Nygaard 1967], which of course was the foundation of
what became known as object-oriented programming. The
Algol Committee had become dominated by Aad van
Wijngaarden, and was pursuing two issues in parallel –
language development, and techniques of language
description – with van Wijngaarden pushing his ideas on
‘two-level grammars’. A series of ever more fractious
meetings was held, culminating in one in Munich in
late1968, when a majority of the committee voted to
approve the Algol 68 Report [van Wijngaarden, Mailloux
et al. 1969]. However Dijkstra was one of the leaders of a
gang of eight (which I am proud to have been a member
of) that produced a Minority Report, arguing that the Algol
68 Report should not be approved [Dijkstra et al 1970]. In
fact I recall we felt that Simula 67 was a more fruitful
development – to my subsequent regret we did not actually

say this in our Minority Report. The committee then split,
and a group of us left to found a new IFIP Working Group
on Programming Methodology, though we regarded this
group, WG 2.3, as having twin roots, the Algol
Committee and the NATO Software Engineering
Conference.

WG 2.3 became an important forum, one at which
Dijkstra tried out, polished and promoted many of his
highly influential ideas on methods of developing high
quality programs (I remained with this working group for a
number of years, though later left when my interests turned
elsewhere.)

11. 1969 NATO Conference
There was a further, much less successful, NATO

Conference on Software Engineering in 1969 in Rome,
which Edsger and I both attended [Buxton and Randell
1970]. I’ve mentioned that Edsger could give very clear and
elegant lectures. However, he was rarely willing to make
any concessions to his audience, for example in adopting
any of the terminology that they might already be familiar
with, and so his lectures were not always well-appreciated.
This was the case in Rome, and one attendee in particular,
Tom Simpson of IBM Houston, justifiably famous within
IBM for his pioneering work on operating systems, in
particular a system called HASP, started an argument with
Dijkstra. This argument continued at intervals throughout
the conference – and I watched with fascination as Tom and
Edsger gradually learnt how to communicate with, and to
gain great respect for, each other. It is a pity that some of
the other people who then, and in the years to come,
reacted negatively to Dijkstra, did not have the time or
inclination to get to appreciate him properly. I’ll return to
this point later.

12. In 12 months from June 1974
I’ve talked a lot about one very eventful year in my

(and Dijkstra’s) life, namely 1968. However at last year’s
BCS meeting in memory of Dijkstra, Tony Hoare chose
another twelve-month period in Dijkstra’s life to illustrate
how amazingly creative he was. This was the period from
June 1974, which Tony illustrated by referring to a sample
of the memos produced in this period.

Dijkstra produced well over a thousand EWD memos
as he called them (now nearly all now on the web), many
handwritten, and distributed Russian “samizdat” style for
years, by a world-wide network of colleagues. (So prolific
was he at least one person, not noticing that they were
Edsger’s initials, wrote to him asking if ‘EWD’ stood for
‘Eindhoven Working Document’.) These are now all
archived, and made available at    http://www.cs.utexas.edu
/users/EWD/   .

The EWDs that Tony highlighted were as follows:
EWD418 – on “Guarded commands, non-determinacy and

a calculus for the derivation of programs” – this led



to his book “A Discipline of Programming”
[Dijkstra 1974a]

EWD426 – “Self-stabilizing systems in spite of
distributed control” – which created a whole
subculture of computing science, addressing the issue
of how certain kinds of system might be designed so
as to be inherently capable of recovering after errors
have occurred and propogated far and wide [Dijkstra
1974c].

EWD464 – “A new Elephant Built from Mosquitos
Humming in Harmony” – this launched the whole
new class of highly parallel algorithms now known
as “systolic algorithms”, since data pulses through
them rhythmically, rather like blood flows through
the heart [Dijkstra 1974b].

EWD492 – “On-the-fly garbage collection” – again a
paper which prompted a whole series of follow-ups
by others, addressing the incredibly tricky problem of
identifying and gradually catching up with the
production of garbage (data items that had become
unlinked and so no longer accessible) without
stopping the system in order to tidy it up [Dijkstra
1975].

This truly is an astonishing output, in just one year -
yet these are just four of the over seventy EWDs that
Edsger wrote and circulated during this period.

The 60th Birthday Salute
In 1989, as Edsgers’s 60th birthday approached, I and

a number of his friends and colleagues, were approached
and asked to provide contributions to a book that would be
produced as a surprise in his honour [Feijen, van Gasteren
et al. 1990]. I was concerned that my field of research, on
fault tolerance and, in particular, my attitude that design
faults had to be tolerated, were so far from his interests and
attitudes that a contribution from me would not be
appropriate. I was very kindly assured by the Editors that
this was not at all the case, but was invited and agreed
instead to write a Foreword to the book. This was a naive
choice on my part, since this was much harder to write.
However, I’d like to end this talk, first by repeating my
acknowledgment of the great debt I owe to Dijkstra, and
then by using some of the remarks I made in this
Foreword:

Edsger is, with all that the word implies, a
perfectionist, who expects as much of his listeners and
readers as he demands of himself. His programming
and his mathematics are strongly guided by his
concern for clarity of notation and exposition, and
indeed for what he quite justifiably terms ‘beauty’.
Thus his descriptions of problems and solutions, both
in his lectures and published papers, and in his EWD
series of documents . . . are often vivid and
compelling.

Although over the years much of his work has
had a very immediate impact, on debate if not always
in practice, some of his more recent diagnoses and
prescriptions have proved harder to take. This is in
part because he is sometimes more concerned with the
truth of his arguments than with whether they are
couched in terms that will help to ensure that they
have the desired effect on his audience. Nevertheless,
careful study of all his writings is highly
recommended to all who care for the future health of
computing science.

Much of the last phase of his career, at the
University of Texas, where he went in 1984, was
spent investigating the effective structure of logical
arguments, applied to mathematics as much as
programming – a distinction whose validity he denied,
since to him programming was mathematics. This
work set standards that many cannot even recognise,
let alone aspire to. However I am confident that it will
eventually have deep and long-lasting effects, much of
it indirect, through the inspiration that it provided to
close colleagues.
Let me end with a quotation from George Bernard

Shaw [Shaw 1903]:
The reasonable man adapts himself to the world:

the unreasonable one persists in trying to adapt the
world to himself. Therefore all progress depends on
the unreasonable man.

Edsger W. Dijkstra is, in many ways, just such a
man. Needless to say, the world of computing science
could well do with many more “unreasonable” men (and
women) of his calibre!

References
[Buxton and Randell 1970] J.N. Buxton and B. Randell,

(Ed.). Software Engineering Techniques: Report on a
Conference sponsored by the NATO Science
Committee, Rome, Italy, 27th to 31st October 1969,
Brussels, Scientific Affairs Division, NATO, 1970,
164p.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato   
1969.PDF    
[Reprinted in Software Engineering: Concepts and
Techniques (eds. J.M. Buxton, P. Naur and B. Randell)
Petrocelli/Charter, New York, 1976.]

[Campbell-Kelly 2002] M. Campbell-Kelly. A Tribute to
Edsger W Dijkstra, The British Computer Society,
Advanced Programming Specialist Group, Computer
Conservation Society, 2002, 8p.

[Dahl and Nygaard 1967] O.-J. Dahl and K. Nygaard.
SIMULA 67: Common Base Definition, Norwegian
Computing Center, Oslo, Norway, 1967.



[Davis 1960] G.M. Davis, “The English Electric KDF9
Computer System,” Comp. Bull., vol. 4, no. 3,
pp.119–120, 1960.

[Dijkstra et al 1970] E.W. Dijkstra et al, “News
Item—Minority Report,” ALGOL Bulletin , vol.
AB31.1.1 (March), 1970.

[Dijkstra 1968a] E.W. Dijkstra, “Go To Statement
Considered Harmful,” Comm. ACM , vol. 11, no. 3,
pp.147-148, 1968a.

[Dijkstra 1968b] E.W. Dijkstra, “The Structure of the THE
Multiprogramming System,” Comm. ACM , vol. 11,
no. 5, pp.341-346, 1968b.

[Dijkstra 1974a] E.W. Dijkstra. Guarded Commands, Non-
Determinacy and a Calculus for the Derivation of
Programs, EWD418, Jun. 1974, 1974a.  
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD41   
8.PDF    
[Published as: Guarded Commands, Non-Determinacy
and Formal Derivation of Programs, Comm. ACM,
1975, 18, 8, pp. 453–457]

[Dijkstra 1974b] E.W. Dijkstra. A New Elephant Built
From Mosquitos Humming in Harmony, EWD464,
Nov. 1974, 1974b.
 [Published in: Selected Writings on Computing: A
Personal Perspective, Springer-Verlag, 1982, pp.
79–83]

[Dijkstra 1974c] E.W. Dijkstra. Self-Stabilizing Systems
in Spite of Distributed Control, EWD426, Jun. 1974,
1974c.
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD42   
6.PDF    
[Published; Comm. ACM,  1974, 17, 11, pp.
643–644]

[Dijkstra 1975] E.W. Dijkstra. On-The-Fly Garbage
Collection: An Exercise in Multiprocessing, EWD492,
Apr. 1975.
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD49   
2.PDF    
[Published as: Dijkstra, E. W., Lamport, L., Martin,
A. J., Scholten, C. S., and Steffens, E. F. M., On-
The-Fly Garbage Collection: An Exercise in
Cooperation, Comm. ACM, 1978,  21, 11, pp.
966–975]

[Feijen, van Gasteren et al. 1990] W.H.J. Feijen, A.J.M.
van Gasteren et al, (Ed.). Beauty is Our Business: A
Birthday Salute to Edsger W. Dijkstra, Springer-Verlag
Texts and Monographs in Computer Science, 1990.

[Naur (ed.) 1960] P. Naur (ed.), “Report on the
Algorithmic Language ALGOL 60,” Comm. ACM,
vol. 3, no. 5, pp.299-314, 1960.

[Naur and Randell 1969] P. Naur and B. Randell, (Ed.).
Software Engineering: Report on a Conference
sponsored by the NATO Science Committee,

Garmisch, Germany, 7th to 11th October 1968,
Brussels, Scientific Affairs Division, NATO, 1969,
231p.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato   
1968.PDF    
[Reprinted in Software Engineering: Concepts and
Techniques (eds. J.M. Buxton, P. Naur and B. Randell)
Petrocelli/Charter, New York, 1976.]

[Randell and Russell 1962] B. Randell and L.J. Russell.
Discussions on ALGOL Translation at Mathematisch
Centrum, W/AT 841, Atomic Power Division,
English Electric Co., Whetstone, Leics., 1962.

[Randell and Russell 1964] B. Randell and L.J. Russell.
Algol 60 Implementation, Academic Press, 1964.
ISBN: 12-578150-4

[Shaw 1903] G.B. Shaw. Man and Superman - "Maxims
for Revolutionists: Reason", 1903.

[Turing 1945] A.M. Turing. Proposals for the
Development in the Mathematics Division of an
Automatic Computing Engine (ACE), Report E882,
National Physical Laboratory, 1945. [Reprinted with
foreword by D.W. Davies, NPL Report Comm. Sci.
57, April 1972.)]

[van Wijngaarden, Mailloux et al. 1969] A. van
Wijngaarden, B.J. Mailloux et al, “Report on the
Algorithmic Language ALGOL 68,” Numerische
Mathematik, vol. 14, pp.79–218, 1969.


